Research Focus

Our long-term objectives are to understand the genetic pathways that control human hematopoietic stem cells (HSCs) and to determine how changes in these programs lead to generating leukemic stem cells (LSC). By identifying the target pathways involved in these changes, we will be able to contribute to the development of targeted therapeutics.

News and New Publications

A stemness screen reveals C3orf54/INKA1 as a promoter of human leukemia stem cell latency (Blood 2019) There is a growing body of evidence that the molecular properties of leukemia stem cells (LSCs) are associated with clinical outcomes in acute myeloid leukemia (AML), and LSCs have been linked to therapy failure and relapse. Thus, a better understanding of the molecular mechanisms that contribute to the persistence and regenerative potential of LSCs is expected to result in the development of more effective therapies. We therefore interrogated functionally validated data sets of LSC-specific genes together with their known protein interactors and selected 64 candidates for a competitive in vivo gain-of-function screen to identify genes that enhanced stemness in human cord blood hematopoietic stem and progenitor cells. 

Prediction of acute myeloid leukaemia risk in healthy individuals (Nature 2018) The incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure. The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion. However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH). Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH.

Tracing the origins of relapse in acute myeloid leukaemia to stem cells (Nature 2017) In acute myeloid leukaemia, long-term survival is poor as most patients relapse despite achieving remission. Historically, the failure of therapy has been thought to be due to mutations that produce drug resistance, possibly arising as a consequence of the mutagenic properties of chemotherapy drugs. However, other lines of evidence have pointed to the pre-existence of drug-resistant cells. Here, through combined genetic and functional analysis of purified subpopulations and xenografts from paired diagnosis/relapse samples, we identify therapy-resistant cells already present at diagnosis and two major patterns of relapse.